The Ackermann function (named after mathematician Wilhelm Ackermann) is the simplest known example of a well defined total function which is computable, but not '''Primitive Recursive''' (calculable using only '''for''' loops with a fixed upper limit). Ackermann(0, j) = j + 1 Ackermann(i, 0) = Ackermann(i - 1, 1) for i>0 Ackermann(i, j) = Ackermann(i - 1, Ackermann(i, j - 1)) for i>0 and j>0 See ReallyBigNumbers for some more discussion of Ackermann's function ''Interesting... anyone care to give a BigOh value for this function?'' ---- Also see * http://mathworld.wolfram.com/AckermannFunction.html * http://mathworld.wolfram.com/PrimitiveRecursiveFunction.html * http://www.wikipedia.org/wiki/Ackermann_function ---- CategoryMath